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Abstract: Various scaling laws such as do/dt ~ s-nf(z)  are tested against the large Itl pp elastic 
scattering data including that from ISR. We draw the following tentative conclusions. (a) 
The ISR data are not incompatible with scaling for Itl > 2.4 GeV 2. (b) This scaling seems 
to be a property of the P ® P cut not the P (pomeron) pole. (c) But the power n seems to 
decrease from about 11.5 at z = 0 to 9 or less at z = 0.99 (at large s) which could be due to 
the Landshoff diagram or eikonalisation becoming important, making scaling just a low 
energy phenomenon. (d) Though f(z) has a fairly simple structure it does not seem to be 
directly related to the proton's electromagnetic form factor. 

1. Int roduct ion 

The somewhat paradoxical  success of  the free quark-parton model  in describing 
the scaling behaviour of  deep inelastic scattering o f  leptons and hadrons [ 1 ] has 
led several authors to try and extend these ideas to large momentum transfer in- 
clusive and exclusive hadron scattering processes. (For  reviews see refs. [2, 3]). 
Various scaling laws have been postulated,  but  the identif ication of  the most 
important  diagrams depends on the assumptions which are made about the 
couplings of  quarks to hadrons, and the nature of  the quark-quark scattering am- 
plitude, and different authors have been led to somewhat different scaling rules. 

Our purpose in this paper is to try and evaluate the phenomenological  success 
of  these various suggestions by  comparing them with the data on the pp elastic 
scattering, which, thanks to recent work at the CERN-ISR, is now available over 
a large range of  s, and a reasonable t range. 

The plan of  the paper is as follows. In sect. 2 we briefly review the principal 
models which are in content ion,  and the at tempts  which have been made to veri- 
fy them. In sect. 3 we discuss the data set, and the method used to interpolate 
between low and high s. This is followed by  discussions o f  the s dependence at 
f'Lxed z (z = the cosine of  the c.m. scattering angle), the z dependence at fixed s, 
and of  some fits using models which are based on the assumption that  informa- 
tion about  the quark-hadron couplings may be obtained from the behaviour of  
the electromagnetic form factors of  the hadrons. Some conclusions are presented 
in sect. 7. 
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2. Models of scaling in exclusive processes 

In 1968 Abarbanel e t  al. [4] proposed (following a suggestion of Yang and colla- 
borators [5, 6] concerning the small Itl behaviour) that at large Itl hadronic elastic 
scattering was dominated by quark-quark (q-q) scattering, as shown in fig. la. The 
q-q amplitude was supposed to be a point-like vector gluon interaction independent 
of s and t, while the quark-hadron (q-H) couplings could be determined from the 
electromagnetic form factors of the hadrons which were supposed to be given 
by fig. lb. This gave (for AB -+ AB) 

da 2 
~ [G A (t) a13 (t)] , (2.1) 

where the G's are the form factors. Thus for pp ~ pp, if Gp(t) ~ (t) -2 they predict 

do 1 (2.2) 
d t  (pp) t 8 ' 

at fixed s. This is not in accord with the low-energy data, however, and instead 
Horn and Moshe [7] proposed that the q - q  scattering amplitude should be a 
scaling function ofz  only, 

z = 1 +  2 t  ~ l + 2 t  ~ 1 2u (2.3) 
s _ 4 m  2 s s ' 

(m = nucleon mass), but need not be a constant as above, and so they postulated 

do 
d~- cc [G A (t) G B (t)] 2 f ( z ) .  (2.4) 

So at fixed z they obtain 

da ~ 1 
dt- (pp) ~ f ( z ) ,  (2.5) 

with n ~- 8. Note that possible log s factors from the loop integrations have been 
neglected in obtaining this result. For the z dependence they used various exponen- 
tial forms such as 

f ( z )  = A e -  at~s, (2.6) 

7 
lal [hi 

Fig. l(a) Proton-proton scattering proceeding via q - q  scattering. (b) Quark model for the 
electromagnetic form factor. 
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[a) (b) 
Fig. 2. Quark interachange diagrams for pp scattering. The double line across the middle of the 
diagram represents the proton "core" left when a quark has been emitted. 

T 
1._ 

(a) {bl 
Fig. 3. Quark interchange (a) and scattering (b) diagrams used to predict scaling behaviour in 
pp scattering in ref. [ 13]. 

and claimed quite a good fit to the s ~ 50 GeV 2 pp data with n = 9.3. 
Alternatively Gunion et al. [8,9] supposed that at large t the dominant me- 

chanism would be the exchange of  the constituent quarks between the protons, 
as in fig. 2. Assuming that the electromagnetic form factor is given by fig. lb 
they obtained 

do 1 1 I (z )  (2.8) 
at- = [Gp(S) Gp(t)  Gp(U)] 2I(z)  ~ s 12 (1 - z2 )  4 

at fixed z, if Gp(t)  ~ t -2 .  This is also claimed [9] to fit the low energy data with 
I (z )  cc ( 1 - z 2 )  -1.2 . 

Landshoff and Polkinghorne [10] supported Gunion et al. in supposing that 
fig. 2 is more important  than fig. la  at large JtJ because they expect that q - H  
scattering ~ 0 as the virtual quark mass (mq) ~ ~ ,  but they suggested that without 
further assumptions which are hard to justify all that one should read from fig. 2 
is the general form 

do 1 
~{ ~ f ( z )  (2.9) 

(neglecting log s terms), and from a fit to the data [11] they found n --- 9.7 + 0.5, 
f ( z )  c~ (1_22) -7  for It[ > 2.5 GeV 2, s > 15 GeV 2. Similarly Barger etal. [12], 
found that n = 9.3 for 0.4 > z > 0, but a thigher  energies n ~ 10 was needed. 

This accords with the proposal o f  Brodsky and Farrar [13] that if the quarks 
have a scale invariant interaction (independent of  s) then both the interchange 
(fig. 3a) and q-q scattering (fig. 3b) diagrams give the behaviour 

do ~ s2-Z f ( z ) ,  (2.10) 
dt 

where Y. is the total number of  quarks entering and leaving the diagram. Thus for 
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Fig. 4. Wide angle triple quark scattering diagram for p -p  scattering considered in ref. [ 14 ]. 

Fig. 5. An example of a multiple exchange eikonal diagram. 

qq ~ qq X = 4, giving the scale invariant behaviour do/d t  ~ s -2 ,  while for pp 
elastic scattering ~ = 12 giving the scaling rule 

da -10 
i f [  ~ s f ( z ) .  (2.11) 

This differs from (2.8) because Gunion et al. [8, 9] treat the proton as an essen- 
tially two-component object (quark + core in fig. 2) rather than the 3q form used 
in fig. 3. The power law (2.10) seems to work well also for the low energy data on 
meson-baryon and photon-baryon scattering [2, 3]. 

However, Landshoff [14] has pointed out that this model gets into difficulty 
if the scaling is supposed to hold in qq scattering for finite virtual mq because then 
the dominant scattering diagram is not fig. 3b, but the multiple wide angle scat- 
tering diagram fig. 4, (where none of the quarks is far from its mass shell), which 
gives 

do ~ s - 8  
d-t- (pp) f ( z ) .  (2.12) 

Thus it is necessary either to suppress wide angle q-q scattering, and suppose that 
the q-q amplitude scales only for large mq, or one must expect the behaviour 
(2.12) to supplant (2.11) at sufficiently large s (see also ref. [15 ]). 

Halliday et al. [16] have criticized all the above models on the grounds that 
they assume dominance of  two-particle exchange, and suggest that instead one 
might use the eikonal model to represent the sum of the leading order contribu- 
tions to diagrams with arbitrary numbers of  exchanges fig. 5, giving 

d_oo l e_ a log2(s/b) (2.13) 
dt s 2 

where a and b may be functions o fz .  
We are thus faced with the situation, which seems to be all too common in 

high-energy physics, that there exists a variety of  proposed models, none of  
which can claim overwhelming theoretical plausibility, and all of  which bear at 
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least some resemblance to the data. The difficulty of  testing these models lies first- 
ly in the uncertainty as to what constitutes asymptotia in s. Most comparisons 
have been made with s < 50 GeV 2 data which forces one to have a fairly small 
lower bound in s, and makes it hard to identify a large negative power o f s  with 
precision, though recently it has been possible to use the ISR pp data as well. 
The situation is further confused by the fact that possible log s dependences have 
been dropped from all the above equations. One might expect to get at least one 
power of  log s for each loop integration in the amplitudes of  figs. 1 -4 .  Moreover, 
in an eikonal type of  theory (2.13) [16] the power behaviours will themselves 
be modified by logarithmic corrections, say 

n ~ n  +n  2 logs. (2.14) 

Also of  course with low-energy data the power of  s obtained is considerably in- 
fluenced by any assumptions which may be made about f ( z ) .  It is clearly necessary 
therefore to try and use data over a wide range of  s, one in whida log s changes 
significantly, if we are really to test these models. 

However, there is also a problem as to the minimum value of  Itl which should 
be used. (2.1) is incompatible with the small Itl data as it stands, though various 
suggestions have been made for iterating it in s (eikonalization) [6, 17], or in t 
(to build up reggeons as q-~ bound states) [18]. In any event, the large angle be- 
haviour should match on to the Regge behaviour at small Itl, but the position of  the 
boundary is unclear. In ref. [11] a fixed t boundary at ItBI = 2.5 GeV 2 is preferred, 
while ref. [18] favours something between a fixed t and a fixed z boundary. 

A related problem concerns the effective trajectory at large Itl (i.e. the s depen- 
dence at fixed t rather than fixed z.) In some of  the above models [2, 18] the tra- 
jectories are expected to asymptote to negative integers, so  C t p p ( - ° ° )  = - 2  for ref. 
[13] or - 3  for ref. [9]. Ref. [19] finds that Ctpp --* --2 phenomenologically, while 
ref. [12] claims it continues to fall with t, app(t) ~ 1 + 0.43t, but the difference 
depends on both the data selection, and the Regge parametrization used. 

We shall examine some of  these questions below. 

3. The pp elastic scattering data 

A problem encoutered in evaluating models for the fixed z behaviour of  scat- 
tering processes is that most of  the high-energy data is published at a selection of  
t values at fixed s, and so interpolation is needed to construct fixed angle data sets. 
For s < 50 GeV 2 da/d t  data is available over the whole angular range [20] (z = 
l -+ 0) at various energies though it is rather sparse at the larger angles for high 
s (see fig. 6). But in the Serpukhov and NAL energy ranges so far only small angle, 
Itl < 1.4 GeV 2, data is available, which is no help to us. In the ISR range there is 
now data [21 ] for Itl < 5.5 GeV 2 corresponding to 1 > z > 0.996, but at accelera- 
tor energies this z region corresponds to ttl < 0.1 where one would certainly not ex- 
pect scaling to occur, so it is not possible to relate these two sets of  high Itl data 
directly. 
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Fig. 6. dcr/dt(pp) at various values of  s plot ted against z (from refs. [ 20, 21 ]). The boundary of  
the scaling region is shown at Itl = 2.4 GeV 2. Also shown is the prediction of  the Regge fit of  
ref. [23] a ts  = 100 GeV 2. 
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Fig. 7. In terpo la ted values o f  the pp data o f  fig. 6 p lo t ted  against s for chosen values o f z .  The 
boundary of  the scaling region at Itl = 2.4 GeV 2 is shown. 

However, we have recently published various Regge fits [22, 23] of  pp and 
pp scattering data for s > 15 GeV 2, Itl < 5.5 GeV 2, which are in excellent quan- 
titative agreement with the observed cross sections at both  low and high energies, 
and which should, we feel, give a fairly reliable interpolation between them. The 
fits are based on a pomeron pole (P) with ap(0) ~ 1.06 to  give the rise in atot, 
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Fig. 8. The effective trajectory of the ISRPP data (from ref. [24]). 

secondary P '  and co trajectories, and a core term (c) to account for the high s, large 
Itk data. (For definitness we have concentrated on fit (iii) of  ref. [23], but the con- 
clusions are similar for fit (ii) as well.) We have used the fit to provide an interpola- 
tion of  the data for the range 50 < s < 3000 GeV 2, 0 < [tl < 5.5 GeV 2. When sup- 
plemented by an interpolation of  the actual data for 13 < s < 50 GeV 2 this enables 
us to span the whole range 0.998 ~> z ~> 0 even though we restrict ourselves to a 
scaling region of  [tl > 2.4 GeV 2 (see fig. 7). 

In order to be able to quote a comparative ×2 for our various fits to this inter- 
polated "data" we have assigned 10% conventional errors over the whole range. 
This is clearly more realistic in some s and t regions than others, but it is used only 
to provide a yardstick by which to evaluate the different models. Our high-energy 
amplitudes have of  course the phases of  the Regge pole terms and are thus compa- 
tible with dispersion relations, but as we are fitting with models for da/dt rather 
than the amplitudes themselves these phases are irrelevant. Scaling models do not 
predict the phases in general, though those which require real large Itl amplitudes 
seem already to be ruled out by the dip in da/dt (pp) at It[ = 1.4 GeV 2. 

Before we discuss our fits in detail a qualitative feature of  the large Itl ISR 
data is worth noting, namely that for Itl > 2.4 do/dr is approximately indepen- 
dent of  s. This is illustrated in the effective trajectory plot (fig. 8 taken from 
ref. [23])which shows that whereas the energy dependence of the low energy 
data is not incompatible with c~(t)/-L~ * - 2 as required by ref. [18], this is cer- 
tainly not proven (see also ref. [19] and contrast ref. [12]); at high energies aef f 

1 within large errors, so there is no sign of  the onset of  this limiting behaviour. 
This could be taken to indicate that the minimum Itl value for scaling is higher 

at large s than at small s, as also suggested in ref. 18. On the other hand if we have, 
at fixed z, the behaviour (2.5), and do/dt is independent of  s, then at fixed s we 
must have 
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Fig. 9. The large Itl (> 2.4 GeV 2) ISR data fitted with (t-2.0) -10. Clearly the power of t is 
not well determined because of the small range of t available. 
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Fig. 10. f (z)  for n = 8, 10, 12. The solid lines are fits to the interpolated data of fig. 7. The 
dashed lines are fits to 'data' from fit (iii) ofref. [23]. 

do  ,.. ~ (3.1) 

aT (t 1 - t )  n 

In fig. 9 we show the large It[ ISR data  compared  wi th  (3.1) for n = I0,  and evi- 
dent ly  the agreement  is qui te  good ( remember ing  that  the energy independence  
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is only approximate)  but  other n values in the neighbourhood are equally satisfac- 
tory (see sect. 6). 

Since, as we discussed in refs. [22-24] ,  the logarithmic slope of d e / d t  is much 
smaller in this region than one would expect (from for example simple Regge cut 
and other rescattering models which would lead us to expect half the logarithmic 
slope of  the small It[ data) it could be that this slope is determined by the onset 
of  a scaling behaviour rather than multiple scattering effects [24]. This will be ex- 
plored further below. 

4. The s-dependence 

The various models of  scaling behaviour discussed in sect. 2 have led us to exa- 
mine the following parameterizations for wide angle scattering: 

The scaling law (refs. [ 7 -13 ] )  

de  1 
- f ( z ) .  ( 0  dt  s n 

Scaling with logarithmic corrections 

do = 1  (log s) nl  f ( z ) .  (ii) 
dt  s n 

Logarithmic corrections to the power behaviour (ref. [16]) 

de  1 
d t  - n+n21og s f(z). ( i i i )  

8 

In fig. 10 we show the power o f n  obtained in fitting our interpolated "data"  
for 24 < s < 3000 GeV 2, Itl > 2.4 GeV 2 (as described in sect. 3) at fixed values of  
z, with parameterization (i). Good fits are obtained at each z, and the value n de- 
creases from 11.5 to about 9 as z (and hence the range o f s  fitted, see fig. 6) is in- 
creased. It is evident from fig. 7 that if  we take a lower s cut of f  than 25 GeV 2 a 
single power will not suffice. This high cut of f  accounts for the different between 
these results and the conclusions of  some other authors [7, 11, 12]. However, we 
have not included the data of  ref. [25] at s = 60 which suggests that even higher 
values o f n  (~- 1 1 - 1 2 )  may occur for small z and s > 50 GeV 2 (see also refs. [8, 9]). 

Also shown in fig. 10 is the effect o f  fitting the s > 24 GeV 2 data with param- 
eterization (ii), n 1 being fixed at 2, as suggested by the single loop amplitude of  
fig. 2. The log 2 s makes it possible to fit over a somewhat larger s range in fact 
(s > 13 GeV 2) but  does not affect the conclusions significantly except that n is 
uniformly increased, as would be expected. Similarly, we have found that taking 
n 1 = 4 (as suggested by fig. 1) increases n further, while n 1 = - 2  decreases n 1 . 
The fits improve, but not significantly, with increasing n 1 . 
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We have also attempted to fit with (iii), but the amount of  data and the range 
o f s  available at a given z is insufficient to determine the extra parameter n 2. 

We conclude from these fits that the data is unable to distinguish between the 
different parameterizations (i)-(iii), since all three are able to fit satisfactorily. 
In each case there is a lower bound on Itl of  about 2.4 GeV 2 which is independent 
of  the energy, with a rapid departure of  the data from the scaling curve at smaller 
Itl as one goes into the dip at Itl 1.4 GeV 2. The lower bound in s is about 24 GeV 2 
for a single power (i), but can be lower if log s terms are included. Most important 
however, it is clear from fig. 10 (and also apparent in fig. 7) that n tends to de- 
crease as z increases, so the high energy data with z near 1 seems to require a lower 
power ofs .  

5. The z-dependence 

Since n does not vary greatly (within the large errors) over the whole angular 
range it is interesting to test the effect o f  fixing it at the various values suggested 
by the models described in sect. 2, (i.e. n = 8, 10 and 12) and determine the cor- 
responding f (z ). 

In fig. 11 we plot f ( z )  obtained from our interpolated "data" using (i) with 
these values of  n. The plots show that (as noted in refs. [8, 9, 11 ]) the form 

f ( z ) -  a 
(1 - z2  ) m 

works surprisingly well, though with different values o f m  in the ISR and accelera- 
tor regimes. Obviously, the goodness of  fit varies somewhat with z, depending on 
how far the power of  n which is used differs from the optimal value given in 
fig. 10. However, we also want to emphasize that there is a strong correlation be- 
tween the values of  m obtained and the chosen n. In fact they are approximately 
linearly related in both regimes. Our results thus contrive to be in approximate 
accord with the apparantly rather different conclusions of  ref. [ 11 ], n = 9.7, m = 
7 and of  ref. [8], n = 12, m = 6. The effect of  using parameterisation (ii) instead, 
with say n 1 = 2, is not significantly different from the above. 

6. The angle dependence and form factors 

The rather straightforward z dependence shown in fig. 11 implies that one may 
be able to fit all the data with simple parameterizations of f (z) .  In so doing it is 
no longer necessary to interpolate the data to chosen z values, but  we can fit the 
actual experimental data at both accelerator and ISR energies (the data of  ref. 
[21], normalized as described in ref. [26]). Again, we restrict ourselves to s > 
24 GeV 2 , Itl > 2.4 GeV 2 . 
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Fig. 11. f ( z )  for n = 8, 10, 12. The solid lines are fits to the interpolated data of fig. 7. The 
dashed lines are fits to 'data' from fit (iii) of ref. [23 ]. 

Fig. 11 suggests that  we try 

f (z )=  a 
( 1 - z 2 )  m (a) 

We have a t tempted  to use (a) in parameter iza t ion  (i) to fit all the data, and the re- 
sulting parameters are given in table 1. (In an obvious no ta t ion  we call this fit (ia)). 
Not surprisingly, the X 2 per point  is poor  because, as is evident from fig. 11, the ac- 
celerator and ISR regions prefer different  values of  re. The best values obtained in 
fits to these two regions separately are also given in table 1, and are in agreement 
with fig. 11. However, the n value of  the ISR fit differs somewhat  from fig. 10 be- 
cause of  the inf luence o f f ( z ) .  

The use of  (a) in parameter izat ion (ii) (fit(iia)) is very similar to the above bu t  
the ?(2 is somewhat  worse. However, now that we have fixed on a form for f ( z )  it 
is possible to use parameter izat ion (iii) as well and determine n2 ,  because high 
and low s are fitted s imultaneously.  As the table shows the value of  n is raised 
considerably,  and the overall fit is much  better .  See fig. 12. We discuss a varient 
of  this model  below. 

The obvious criticism which can be made of  (a) is that  f ( z )  ~ oo as z ~ 1 so there 
is b o u n d  to be some diff icul ty at small angles. It seems more realistic to move this 
singularity out  o f  the physical region, and a simple way to do this is suggested by  
the model  discussed in sect. 2, i.e. to use a form factor like 
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Fig. 12. A fit to the pp differential cross section data of references [20, 21 ] using parameteri- 
zation iii(a) (solid lines). A prediction'is given at s = 400 GeV 2 (dashed line). 

G( t )  - 1 , (6.1) 
(1 - t i t  1 )fro 

(where physical ly for pro tons  t I ~ 0.71,  m ~ 4)  and symmetr ize  by  wri t ing 

do a 2 
= 7  [G(t )  G(u)]  , (6.2) 

which gives us parameter iza t ion  (i) wi th  

n = l + 2 m .  
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The fits (ib) reported in table 1 show the results of comparing this formula with 
all the data, and with high and low energies separately. The fit is an improvement 
over (ia) but again the two regions really prefer different values of the parameters. 
The values of n in the overall fit is close to that which would be obtained from the 
dipole with I = 0, but the value of m is much higher. Again the n value at ISR is 
rather low. 

Correspondingly with parameterization (iib), n 1 = 2, we are able to fit as well, 
and the only difference is to lower n a bit. 

With (iiib) the extra freedom provided by n 2 enables us to get a better descrip- 
tion of the data, by adjusting to give the desired energy dependence at low energy, 
and the approximate energy independence of the ISR data, at fixed t. But the 
value o fm is clearly quite different from that of the form factor, and t 1 is very 
small (see below). 

However it is well known that the dipole form (6.1) is not a very good descrip- 
tion of the proton's electromagnetic form factor at larger Itl, which is better re- 
presented by [27] 

1-1 t , (6.3) 

though the asymptotic behaviour ~ t -3 then contradicts the usual scaling assump- 
tions [2]. If (6.3) is symmetrized like (6.1) we get 

f (z)=a(I( l+O'7s64 ) 2 - z 2 1  [ ( 1 + 4 ' 2 0 - ) 2 - z 2 1  I(1+28s "0 ) 2 - z 2 1 } - 2  , 

n = l +  12. (c) 

With this form we obtain the fits (ic) given in table 1. They have fewer free param- 
eters than (ib), and are even less satisfactory overall, though the fit to ISR data 
alone, with its rather limited t range, is moderate. Similar remarks apply to (iic) 
and (iiic). 
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Fig. 13. n as function oft 1 using parameterization i(a) in the energy regions above. 
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Model s x2/Point 
Range a) n m log10 a t l  n2 n 3 M I A 

M 10.45 7.15 9.35 2.4 
i(a) I 7.15 6.87 3.03 1.3 

A 7.94 7.24 5.37 15.8 2.9 14.4 

M 11.48 8.24 11.20 0.71 2.2 
i(b) I 8.50 8.40 5.61 0.85 1.2 

A 9.08 8.40 7.46 0.83 14.0 1.9 12.5 

M 12.69 14.21 20.0 
i(c) I 7.98 9.69 7.2 

A 11.41 12.26 24.2 26.0 24.6 

M 11.51 7,22 9.87 2.7 
ii(a) I 7.64 6.87 3.44 2.0 

A 8.24 7.19 4.74 17.5 3.0 15.7 

M 11.33 7.60 9.70 0.61 2.3 
ii(b) ~ I 9.60 9.27 6.14 1.50 1.8 

A 9.41 8.37 6.88 0.85 16.0 2.1 14.4 

M 11.96 12.03 21.8 
ii(c) I 7.99 8.03 7.2 

A 12.56 14.02 21.0 26.0 21.6 

iii(a) A 13.98 7.18 11.87 -0.53 3.3 1.3 3.1 
iii(b) A 13.95 7.22 11.87 0.02 -0.53 3.3 1.3 3.1 
iii(c) A 16.23 14.88 -0.86 34.3 9.7 31.5 

iv(a) A 10.66 5.28 9.68 0.52 2.5 2.9 2.5 
iv(b) A 11.10 6.48 10.56 0.63 0.45 2.5 2.6 2.5 

a) s Ranges: M(24 < s < 50), I(950 < s < 3000), A(24 < s < 3000). 

It is clear from table 1 that  the n value required with parameter izat ion (i) at 
low energies differs considerably from that  needed to fit the ISR data, so it is 
no t  surprising that  the a t t empt  to fit the entire s range with a compromise set 
of  parameters was unsat isfactory.  This difference is i l lustrated further in fig. 13 

where n is plot ted against t I in fit ( ib) for the two energy regions. (Of course, the 
×2/pt  increases as one moves away from the best fit parameters of  table 1): 
The energy independence  of  the ISR data at fixed t requires n ~- m and we find 

that  similar values of  m are also needed at low energies though n is quite different  
(see table 1). So n decreases wi th  s b u t  m is approximate ly  independen t  o f  energy. 

This accounts  for the comparat ive success of  model  (iiib) which has different 
effective n ' s  in the two regions (with n 2 negative). These fits have the rather stran- 
ge feature that  as s increases b e y o n d  the ISR regime the cross section is predicted 
to start increasing with s at fixed t, i.e. anti-shrinkage will set in in contrast  to the 

shrinkage found  at low energy. It is no t  inconceivable that  this effect m ay  actually 
be observed. 



P.D.B. Collins et aL, P.D.B. elastic scattering 155 

Since a and b in (2.13) can both be functions of  z, more complicated parameteri- 
zations than (iii) are possible such as 

do 1 
- f ( z ) ,  

dt s~ 

h- = n + n 3 log (1 - z  2) + n 2 log s. (iv) 

(Note that i fn  3 = n 2 the power o f s  at fixed t becomes independent of  log s for 
large s). The virtues of  such a fit with n = 4, n3 = 0, and n 2 = 0.99 are discussed in 
ref. [16]. The positive value of  n 2 is due to the fact that these authors fit down to 
very low energies. We find a good fit with n 2 = 0 (see table 1). The effect of  this 
parameterization is to increase the effective value o f m  with s while keeping n con- 
stant. This model also gives anti-shrinkage at large s. 

7. Conclusions 

Though these fits are necessarily somewhat inconclusive because the range of  
data available is too small the following points seem to stand out. 

Firstly the larger Itl ISR data, though approximately independent o f  s, have a t 
dependence which is not incompatible with the onset of  scaling at t -- t B ~ - 

2.4 GeV 2 like at machine energies. This is in contrast with the expectation of  a 
fixed z, or at least an s-dependent, boundary to the scaling region, obtained from 
some models (e.g. ref. [18]). 

In ref. [ 11 ] it was suggested that the scaling behaviour might match smoothly 
onto the pomeron Regge pole behaviour at small t, leading to t B ~ - 2.5 GeV 2 if 
ap(t)  ~ 1 + 0.5t. Our recent fits which give ap(t)  ~ 1.06 + 0.2t would suggest tB 
in the region o f  5 GeV 2 if one followed the same line o f  argument, but the pre- 
sence o f  the dip in do/dt  at Itl ~ 1.4 GeV 2 makes it clear that the scaling region 
does not in fact run smoothly into the Regge behaviour. Rather, if  the Regge 
pole and cut fits o f  ref. [24] are accepted, the scaling boundary corresponds to 
the onset of  the dominance of  do/dt  by the almost energy independent P @ P cut. 
One might speculate that this cut is related to those found by Lovelace [28] in 
renormalizable field theories with Bjorken scaling. Certainly it is clear from fig. 
8 that aef f is not approaching a negative integer in the ISR region as required by 
ref. [18] (though it could be at low energies). 

Though the errors are rather large we have found that the power behaviour in s 
decreases with increasing s from about n ~ I 1.5 for z ~ 0 at machine energies, 
to n ~ 9 for small angles at ISR. (This situation is somewhat confused by the fact 
that the data of  ref. [25] suggest that n is increasing with s at large angles for 
s > 50 GeV2.) The interchange model with n = 12 or 10, depending on the version 
adopted, thus seems to be failing at high energy at it could be that the Landshoff 
diagram, fig. 4 [14], or eikonalization [16] is beginning to take over in the ISR 
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region. But more data at large ltl are needed to check this conclusion properly 
because of  the interpolations which we have been forced to make in using the ISR 
data. The addition of  logarithmic factors in the parameterizations (ii) and (iii) has 
not made a great deal o f  difference, though the extra parameter in (iii) does enable 
one to get somewhat better simultaneous fits to the ISR and machine energy data. 

The angular dependence, though rather simple both at machine energies (as 
noted by refs. [8, 9, 1 I] and at ISR, is somewhat different in the two cases, as fig. 
11 shows, and though various parameterizations motivated by the behaviour of  the 
electromagnetic form factor can fit either regime satisfactorily it is much harder to 
fit both together. 

This could have several explanations. Perhaps s < 50 GeV 2 is too low and we are 
not really seeing scaling in the accelerator data (though all the other tests [2, 3] 
have perforce been made in this region). Or the apparent scaling at ISR may be an 
accident, and really z ~ 0.98 is necessary for a true scaling behaviour. Or it may 
simply be that a more complicated f ( z )  than (a) (b) or (c), unrelated to the electro- 
magnetic form factors, is required. Alternatively, our results may serve to reinforce 
the conclusion that scaling is really a rather low-energy phenomenon, and non- 
scaling terms such as fig. 4, or eikonalization corrections may break the scaling be- 
haviour at large s. Similar conclusions are being drawn about scaling breakdown in 
deep inelastic scattering [29]. Large angle data at high energies is eagerly awaited 
to help in unravelling these problems. 
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